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In this paper, we investigate the use of the Contribution to the Sample Mean plot (CSM plot) as a
graphical tool for sensitivity analysis (SA) of computational models. We first provide an exact formula
that links, for each uncertain model input Xj , the CSM plot Cj(·) with the first-order variance-based
sensitivity index Sj . We then build a new estimate for Sj using polynomial regression of the CSM plot.
This estimation procedure allows the computation of Sj from given data, without any SA-specific
design of experiment. Numerical results show that this new Sj estimate is efficient for large sample
sizes, but that at small sample sizes it does not compare well with other Sj estimation techniques
based on given data, such as the EASI method.
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1. Introduction

Global sensitivity analysis (GSA) is used to study how the variability of the output of
a model can be apportioned to different sources of uncertainty in its inputs. Here, the
term model denotes any computer code in which a response variable is calculated as a
deterministic function of input variables. Originally developed in the 1990s [1], GSA is
now recognized as an essential component of model building [2, 3] and has been gaining
increasing acceptance in various fields over the last decade. In this paper, we focus on
variance-based GSA, which relies on the decomposition of a model output variance into
conditional variances [4]. So-called first-order and total-order sensitivity indices measure
the main and total effect contribution of each uncertain model input to the model output
variance. Uncertain model inputs are then ranked based on these sensitivity indices, to
i) identify inputs that should be better scrutinized to reduce the variability of the model
output (variance-cutting), but also to ii) simplify the model under study by fixing non-
influential inputs (factor-fixing) [5]. More generally, variance-based GSA helps to explore
the response surface of a black box computer code and to prioritize the possibly numerous
processes that are involved in it.
While a great deal of GSA research has focused on the estimation of sensitivity indices,

few papers have reported on an interesting issue: the computation of variance-based im-
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portance measures from given data. Indeed, most available variance-based GSA tech-
niques require to evaluate the model on a specific, often sophisticated sampling scheme
in the space of uncertain model inputs – e.g., Sobol’ [6], FAST [7] or winding stairs [8, 9]
sampling schemes. However, it often happens in real-world studies that the analyst has
to work from a set of pre-evaluated model runs (given data), that is, a set of model runs
that were initially carried out for a non-GSA purpose, such as uncertainty propagation
or simple model exploration. In this case, model inputs may have been sampled using
simple random sampling (SRS) or systematic sampling. Most of the available algorithms
for sensitivity indices estimation are thus unsuitable, and other techniques are needed to
allow the computation of sensitivity measures from pre-evaluated model runs.
To our knowledge, only few works have tried to tackle this issue – see [10] for a review.

In 2009, Bolado–Lavin et al. revived a simple and versatile graphical tool named Con-
tribution to the Sample Mean plot (CSM plot), originally proposed by Sinclair [11], and
demonstrated how it could be used for GSA from a set of pre-evaluated model evaluations.
More recently, Plischke [12] also proposed another graphical tool named CUSUNORO
– for cumulative sum of the normalised reordered output, which is closely related to the
CSM plot. He related this CUSUNORO plot to new estimators for first-order sensitiv-
ity indices based on correlation ratios. Before, Plischke [13] had also designed the EASI
algorithm that computes first-order indices from given data using a Fast Fourier trans-
formation approach.
In this paper, we will focus on the use of the CSM plot for variance-based GSA from

given data. As we will explain later, the CSM plot is a curve in the [0, 1]× [0, 1] square,
that visualises the contribution of a model input to the output mean across its uncertainty
range. Apart from providing a profitable analysis of the input-output mapping, the CSM
plot can be used for input prioritisation and regional sensitivity analysis. Indeed, Bolado–
Lavin et al. explain that the more the CSM curve deviates from the diagonal, the more
important is the parameter [14]. From this assertion, they developed a permutation-
based statistical test for model input prioritisation, the test statistic being the maximum
vertical distance of the CSM curve from the diagonal — in case of several crossings
of the diagonal, sum of the maximums was proposed in [14]. They also tried to relate
the CSM plot with first-order variance-based sensitivity indices, claiming from empirical
considerations that an input featuring a very low first-order effect will lead to a line close
to the diagonal in the CSM plot [14, 15]. Their numerical experiments corroborate this
claim, and indicate that their CSM-based criterion is consistent with the ranking of input
parameters provided by first-order variance-based sensitivity indices.
Nevertheless, to date, none of these studies has clearly demonstrated the formal link

between the CSM plot and variance-based sensitivity indices. Our paper is an attempt is
this direction. We will try to answer the following questions: how exactly are the CSM plot
and first-order sensitivity indices related? Is it possible to compute first-order sensitivity
indices from a CSM plot? By answering these questions, our goal is to open a new way to
carry out variance-based GSA from pre-evaluated model evaluations. We start by defining
the CSM plot (Section 2). We then give an explicit formula that links the CSM plot to
first-order variance-based sensitivity indices (Section 3). From this formula, we propose
new estimates for first-order indices based on given data, using polynomial regression
or spline smoothing of the CSM plot (Section 4). In Section 5, we make a brief foray
into the case of total-order sensitivity indices and examine their potential relation with
the Contribution to the Sample Variance plot. Numerical experiments are then carried
out (Section 6) on the classic Ishigami and G-Sobol functions, and the performance of
our new estimators are compared with existing ones. We discuss the outcomes of our
research, its limits and its connections to related works in Section 7.
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2. The Contribution to the Sample Mean plot

The contribution to the sample mean plot (CSM plot) was first introduced by Sinclair
[11], and then revived and improved by Bolado–Lavin et al. [14] as a graphical tool for
GSA. The CSM plot is also known as Lorenz curve by social economists, who use it as
a measure of inequality. In this section, we first reproduce, in a slightly different way,
the presentation of Bolado–Lavin et al. on how to build a CSM plot from a set of model
runs, then we offer to define the CSM plot in a more formal way. We also show the link
between the CSM plot and the CUSUNORO curve, which was recently introduced by
Plischke [12] as another graphical tool for GSA.

2.1 CSM plotting procedure from a set of model runs

2.1.1 Notations

Let consider a computational model y = f(x1, . . . , xm) with m input parameters and a
scalar output y. In order to describe the uncertainty on input parameters, we treat them
as independent random variablesX1, . . . ,Xm. The model output is also a random variable
Y = f(X1, . . . ,Xm). We assume that Y has finite expectation E(Y ) and finite variance
V(Y ). We assume that a sample of size n ∈ N∗ of random variables (X1, . . . ,Xm) has been
drawn. We will denote the ith realisation of a parameter set with xi· = (xi1, . . . , xim), and
the total sample is denoted with matrix notation x = (xij)i=1,...,n, j=1...,m. The associated
vector of model output is denoted by y = f(x), that is, yi = f (xi·) , i = 1, . . . , n.

2.1.2 Plotting procedure

The empirical Contribution to the Sample Mean plot (CSM plot) for the jth input pa-
rameter Xj is built using the following procedure [14]:

(1) build the shifted output y+ = y −min(y);
(2) compute the – shifted – output mean µ̂+ = 1/n

∑
i y

+
i ;

(3) sort the vector (x1j , . . . , xnj) of random realisations of Xj increasingly to obtain a
permuted vector (xπj(i)j)i=1,...,n. The permutation πj transforms the initial indices
i ∈ {1, . . . , n} into shuffled indices πj(i) so that xπj(1)j ≤ · · · ≤ xπj(n)j ;

(4) build the permuted output vector πj(y
+) = (y+

πj(1)
, . . . , y+

πj(n)
);

(5) for each n-quantile qi =
i
n
, i = 1, . . . , n, compute c+ij as follows:

c+ij =
1

nµ̂+

i∑

s=1

y+
πj(s)

(1)

The CSM plot for input parameter Xj (Fig. 1) is finally obtained by plotting the vector
(c+1j , . . . , c

+
nj) against the n-quantiles (q1, . . . , qn). For convenience, we will also define the

bottom-left corner of the CSM plot with q0 = 0 and c0j = 0.

2.1.3 Note on output vector shifting

Note that in the first step of the above procedure, the output vector y is shifted to get
a positive vector y+ = y −min(y). Thanks to this shift, the CSM values verify

∀i = 1, . . . , n, c+ij ≤ c+(i+1)j
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and all the CSM points (qi, c
+
ij)i=1,...,n lie in the [0, 1] × [0, 1] square. Nevertheless, it is

also possible to build a CSM plot without shifting the output vector y. We will denote
by µ = 1/n

∑
i yi the non-shifted output mean, and by cij the non-shifted contribution

to the sample mean associated to each n-quantile qi =
i
n
, i = 1, . . . , n:

∀i = 1, . . . , n, cij =
1

nµ̂

i∑

s=1

yπj(s) (2)

In this case, if the output vector y includes negative values, then the CSM values are
not increasing anymore, and some of the CSM points (qi, cij)i=1,...,n may lie outside of
the [0, 1] × [0, 1] square (Fig. 1, right). The relation between the shifted and non-shifted
CSM points is simply derived from Eqn. (1) and (2), using the notation λ = min(y)/µ̂:

∀i = 1, . . . , n, cij = (1− λ)c+ij + λqi

In the following sections, we will focus on the non-shifted CSM plot, but we will also
show why this distinction is, in the end, irrelevant regarding the computation of first-
order sensitivity indices from the CSM plot.

2.2 Formal definition of the CSM plot

We now present a more formal definition of the Contribution to the Sample Mean plot,
and explain how it relates to the plotting procedure described previously.

2.2.1 Definition

Definition 1 (Contribution to the sample mean plot) Let X be am-dimensional random
vector with joint pdf p. Let denote byX∼j the random vector of all componentsXi except
Xj , and p∼j the associated joint pdf. The marginal pdf (resp. cdf) of random variable
Xj is denoted with pj (resp. Fj). Let f : Rm 7→ R be a function such that f(X) has
finite, non-zero expectation and finite variance. The CSM plot associated to Xj and f is
a function Cj : [0; 1] → [0; 1] defined by:

∀q ∈ [0; 1], Cj(q) =

F−1

j (q)∫
−∞

(∫∫∫
Rm−1 f(x) p∼j(x∼j)dx∼j

)
pj(xj)dxj

∫∫∫
Rm f(x) p(x)dx

(3)

Cj(q) represents the fraction of the output mean due to the fraction q of smallest values
of Xj . We notice that it is not defined if E [f(X)] = 0.

2.2.2 Monte Carlo estimation

We will now show that the CSM plotting procedure described by Bolado–Lavin et al.
[14] and reproduced in Section 2.1.2 leads to a Monte Carlo estimation of the quantities
Cj(q) for each n-quantile qi =

i
n
, i = 1, . . . , n. To make it clear, let first rewrite Eqn. (3)

as the ratio of two m-dimensional integrals, for the specific case q = qi = i/n:

∀i = 1, . . . , n, Cj(qi) =

∫∫∫
Rm f(x) 1Fj(xj)≤qi p(x)dx∫∫∫

Rm f(x) p(x)dx
(4)
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Let now consider a simple random sample of size n ∈ N⋆ of random vector X, with
xs· = (xs1, . . . , xsm) the sth realisation of the sample. To estimate the exact quantity
Cj(qi), we may compute the Monte Carlo estimates of both the numerator and denomi-
nator in Eqn. (4):

∀i = 1, . . . , n, Ĉj(qi) =

1
n

n∑
s=1

f(xs·)1Fj(xsj)≤qi

1
n

n∑
s=1

f(xs·)

(5)

To go further, we need to approximate the indicator function 1Fj(xsj)≤qi . A Monte Carlo

estimate for the marginal cdf Fj(xsj) is F̂j(xsj) = πj(s)/n where πj is the permutation
previously defined in Section 2.1.2. Using qi = i/n, the condition Fj(xsj) ≤ qi is then
approximated by πj(s) ≤ i. If we note that the denominator in Eqn. (5) is equal to the
output sample mean µ̂, we finally obtain the following Monte Carlo estimate for Cj(qi):

∀i = 1, . . . , n, Ĉj(qi) =
1

nµ̂

n∑

s=1

f(xs·)1πj(s)≤i (6)

We observe that this Monte Carlo estimate Ĉj(qi) is just a rewriting of the non-shifted
CSM point cij defined in Eqn. (2). The three Monte Carlo estimates involved in the

computation of Ĉj(qi) have a theoretical convergence speed of 1/
√
n, yet we did not

investigated further the asymptotic properties of Ĉj(qi).

2.3 Link with the CUSUNORO curve

Plischke [12] introduced the CUSUNORO curve – standing for cumulative sum of the
normalised reordered output – as a new graphical tool for sensitivity analysis of com-
putational models . The CUSUNORO curve related to model input Xj is defined by
plotting the n-quantiles qi =

i
n
, i = 1, . . . , n against the cumulative sums zij , i = 1, . . . , n

of re-ordered model output, defined by:

∀i = 1 . . . n, zij =
1

nσ̂

i∑

s=1

(
yπj(s) − µ̂

)
(7)

with σ̂ =
√

1/n
∑n

i=1(yi − µ̂)2 a biased estimator of the standard deviation of random
output Y . As [12] already noticed it, the CSM plot and the CUSUNORO curves are just
different ways of visualising the same information. Indeed, we have the following relation
between the non-shifted CSM points cij and the CUSUNORO points zij [Eqn. (1) and
(7)]:

∀i = 1 . . . n, zij =
cij − qi

ĉv

with ĉv = σ̂/µ̂ a biased estimator of the coefficient of variation cv = σ(Y )/E(Y ) of
random output Y . Based on this relation, we suggest to define the CUSUNORO function
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Zj : [0, 1] → [0, 1] by:

∀q ∈ [0, 1], Z(q) =
Cj(q)− q

cv
(8)

The main advantage of the CUSUNORO curve compared to the CSM plot is that it is
well defined even if the model output expectation E(Y ) = 0. Its main drawback is that
it is not scaled like the – shifted – CSM plot, whose points always lie in the [0, 1]× [0, 1]
square, which is not the case for the CUSUNORO points zij . Because the CSM and
CUSUNORO plots are closely related, most of the following discussion on the CSM plot
will also hold for the CUSUNORO curve.

3. Link between CSM plot and first-order sensitivity indices

We will now give an exact relation between the CSM plot Cj(·) and the first-order
variance-based sensitivity index Sj associated to model input Xj. Let first recall that Sj

is defined by:

Sj =
VarXj

(
EX

∼j
[Y | Xj ]

)

V(Y )

Sj measures the main effect of input parameter Xj on the variance of model output. It is
the expected share of output variance that would be reduced if input parameter Xj was
fixed. First-order indices verify Sj ∈ [0, 1] and

∑
j Sj ≤ 1. They can be used to identify

the model inputs that account, on their own, for most of the model output variability.
Please refer to [5] for an in-depth discussion on the definition and properties of first-order
sensitivity indices.

Proposition 1 Let Cj(q) (resp. Zj(q)) denote the CSM plot (resp. the CUSUNORO
plot) associated with the jth input parameter Xj , Sj denote the first-order variance-based
sensitivity index of Xj with respect to model output Y , and cv = σ(Y )/E(Y ) denote the
coefficient of variation of model output Y . We have:

Sj =
1

c2v
·

1∫

0

[
d

dq
(Cj(q)− q)

]2
dq (9a)

and

Sj =

1∫

0

[
dZj

dq
(q)

]2
dq (9b)

Proof. The proof is straightforward using the definitions of the CSM plot and first-
order sensitivity indices. The CSM plot Cj(q) defined in Eqn. (3) can be written using
conditional expectation:

∀q ∈ [0; 1], Cj(q) =
1

E(Y )

F−1

j (q)∫

−∞

E [Y | Xj = xj ] pj(xj)dxj (10)
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By derivating Eqn. (10) with respect to q, using the fact that (F−1
j )′(q) = 1/pj

(
F−1
j (q)

)
,

we obtain an expression of the derivative of Cj(q):

∀q ∈ [0; 1],
dCj

dq
(q) =

E
[
Y | Xj = F−1

j (q)
]

E(Y )
(11)

We can make the right member of Eqn. (11) appear from the definition of variance-based
first-order sensitivity index Sj of input parameter Xj with respect to output Y :

Sj =
VarXj

(
EX

∼j
[Y | Xj ]

)

V(Y )
(definition from Saltelli et al. [5])

=
1

V(Y )
E
[
(E [Y | Xj ]− E(Y ))2

]

=
1

V(Y )

∫

R

(E [Y | Xj = xj]− E(Y ))2 pj(xj)dxj

Using transformation xj = F−1
j (q) we have:

Sj =
1

V(Y )

1∫

0

(
E
[
Y | Xj = F−1

j (q)
]
− E(Y )

)2
dq

=
E(Y )2

V(Y )

1∫

0



E
[
Y | Xj = F−1

j (q)
]

E(Y )
− 1




2

dq

Using Eqn. (11) and denoting with cv = σ(Y )/E(Y ) the coefficient of variation of random
output vector Y , we finally obtain the expected relation between first-order sensitivity
index Sj and Cj(q). The relation between Sj and the CUSUNORO plot Zj(q) is simply
obtained by combining Eqn. (8) with Eqn. (9a). �

Let us look briefly at what Proposition 1 means. We observe that Eqn. (9a) involves the
derivative of (Cj(q)− q), which is the vertical distance of the CSM plot to the diagonal
in the [0, 1] × [0, 1] square. Hence, the more the CSM plot deviates from the diagonal,
the larger the value of Sj, that is, the larger the contribution of input parameter Xj to
the variance of the model output. This result is in line with previous assertions on the
CSM plot [14, 15]. Equation (9a) also offers a new way to estimate first-order sensitivity
indices from a CSM plot: we discuss this point in the following Section 4.

4. Estimation of first-order sensitivity indices from the CSM plot

4.1 Overview

We now assume that a CSM plot (i.e., a set of points (qi, cij)i=1,...,n) has been built for
the jth input parameter from a set of n model runs, following the plotting procedure
described in Section 2.1. We can use Eqn. (9a) to approximate first-order sensitivity
index Sj from this CSM plot. A key point in Eqn. (9a) is that the sensitivity index Sj is
invariant under any linear transformation of model output Y → aY +b, a ∈ R⋆, b ∈ R. As

7
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a consequence, Sj can be computed from a CSM plot built on the original output vector
y, or from a CSM plot built on any scaled and shifted output vector y⋆ = ay + b. In
particular, Sj can be equally computed from the shifted output vector y+ = y−min(y),
or from the non-shifted output vector y. Hence, we can equally use the shifted CSM
points c+ij [Eqn. (1)] or the non-shifted CSM points cij [Eqn. (2)] to estimate Sj: we will
now stop distinguishing between these two options. Besides, in order to keep the notation
short, the dependency of Cj(q) and cij on j will now be dropped, and we will simply
write C(q) or ci.
The coefficient of variation cv in Eqn. (9a) can be straightforwardly estimated from

the output vector y: ĉv = σ̂/µ̂ with µ̂ and σ̂2 the unbiased estimators of E(Y ) and V(Y ),
respectively. Alternatively, it can also be estimated from the set of CSM points (ci)i=1,...,n

using Eqn. (1):

ĉv =

√√√√ n2

n− 1

n−1∑

i=1

(ci+1 − ci −
1

n
)2 (12)

Next, the integral I =
∫ 1
0 (C ′(q)− 1)2 dq can be numerically approximated from the

set of points (qi, ci)i=1,...,n. Sensitivity index Sj is then approximated by:

Ŝj =
Î

ĉ2v
(13)

We describe in the following subsections 4.2 to 4.4 three different techniques to compute
Î and Ŝj : i) finite difference scheme and Simpsons’s rule; ii) polynomial regression; and
iii) spline smoothing.

4.2 Finite difference scheme

In this approach, we follow three steps. We first approximate the CSM derivative C ′(qi)
at n-quantiles qi from the sample points (qi, ci)i=1,...,n, using a finite difference scheme.
In order to get enough smoothing of the derivative, we choose a 11 points finite difference
scheme. The approximated derivative c′i ≈ C ′(qi) at quantile qi =

i
n
is given by:

∀i ∈{5, . . . , n− 5} ,

c′i ≈
n

2520
· [2 · ci+5 − 25 · ci+4

+ 150 · ci+3 − 600 · ci+2

+ 2100 · ci+1 − 2100 · ci−1 + 600 · ci−2

−150 · ci−3 + 25 · ci−4 − 2 · ci−5]

(14)

Then, we use the composite Simpson’s rule to approximate the integral I =∫ 1
0 (C ′(q)− 1)2 dq from the set of sample points (c′i)i=5,...,n−5. Finally, we compute the

approximate sensitivity index with Ŝj = Î/ĉ2v .
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4.3 Polynomial regression of the CSM plot

In this second method, we proceed in two steps. First, we fit a polynomial model to
the CSM sample points (qi, ci)i=1,...,n. Instead of using the canonical polynomial basis
(qk)k∈N, which is known to lead to unstable regression results, we use the shifted Legendre
polynomials (Pk(q))k∈N, which form an orthonormal basis of L2([0; 1])1:

∀i = 1, . . . , n, ci =
d∑

k=0

αkPk(qi) + ǫi (15)

with residuals ǫi assumed to follow a zero-mean normal distribution. The coefficients αk

are estimated with least squares regression. The maximal polynomial order d ∈ N∗ can
be selected by minimizing the corrected AIC information criterion:

AICc(d) =
n

2
+

n · (d+ 2)

n− d− 3
+

n

2
· log

(
2π

n

n∑

i=1

ǫi(d)
2

)

with (ǫi(d))i=1,...,n the regression residuals obtained with a polynomial model of max-

imal degree d. Then, using the approximation C(q) ≈ ∑
k αkPk(q), we get an approxi-

mation of the integral I =
∫ 1
0 (C ′(q)− 1)2 dq:

Î =

∫ 1

0

[(
d∑

k=1

αkP
′
k(q)

)
− 1

]2
dq (16)

In order to obtain a more pleasant notation, we use the fact that P ′
1(q) = 2 to define

modified coefficients (α̃k)k=1,...,d as equal to coefficients (αk)k=1,...,d except for α̃1 = α1− 1
2 ,

and we obtain:

Î =

∫ 1

0

[
d∑

k=1

α̃kP
′
k(q)

]2
dq

=

d∑

k,l=1

α̃kα̃l

∫ 1

0
P ′
k(q)P

′
l (q)dq

The exact value of the integral Ikl =
∫ 1
0 P ′

k(q)P
′
l (q)dq can be computed from classical

results on Legendre polynomials (see Appendix A for a proof):

∀(k, l) ∈ N
2, k ≤ l Ikl = 2k (k + 1) 1{(k+l)∈ 2N}

1Shifted Legendre polynomial Pk are defined by Pk(q) = P
(s)
k

(2q − 1) with P
(s)
k

the standardized Legendre
polynomials, which are given by the Rodrigue’s formula [16, p.785, Eqn. 22.11.5] :

∀k ∈ N, ∀q ∈ [−1, 1], P
(s)
k

(q) =
(−1)k

2k · k!

dk

dqk

[

(q2 − 1)k
]

9



November 13, 2013 Journal of Statistical Computation and Simulation draft

We thus obtain the following estimator for first-order sensitivity index Sj :

Ŝj =
2

ĉv
2

d∑

k,l=1
k+l∈ 2Z

α̃kα̃l ·min(k, l) [min(k, l) + 1] (17)

Using Eqn. (8), we can find a similar relation to estimate Sj from the polynomial
regression of the CUSUNORO curve Zj(q):

Ŝj = 2

d∑

k,l=1
k+l∈ 2Z

βkβl ·min(k, l) [min(k, l) + 1] (18)

where (β)k∈N are the regression coefficients of the polynomial model Z(q) =
∑

k βkPk(q).

4.4 Spline smoothing

In this third method, we proceed in four steps. We first fit a non-parametric regression
model Ĉ(q) (spline of order o ∈ N) to the set of CSM points (qi, ci)i=1,...,n. We then use
this spline model to estimate CSM derivative at N new points (qs =

s
N
)s=1,...,N with N =

10000. Next, we approximate the integral Î ≈ I from the N points (qs, Ĉ
′(qs))s=1,...,N

using composite Simpson’s rule. We finally approximate sensitivity index with Ŝj = Î/ĉ2v .

5. Contribution to the sample variance plot and total-order sensitivity

indices

In the light of our findings on the CSM plot, it is temptating to formulate a new question:
is there any graphical tool, analogous to the CSM plot, that would allow the estimation
of total-order sensitivity indices STj? A possible track to investigate is that of the Con-
tribution to Sample Variance plot (CSV plot) introduced by Tarantola et al. [15]. Hence,
before moving to the presentation of two numerical test cases in the next Section, we
will briefly discuss the possible use of the CSV plot to compute total-order sensitivity
indices.

5.1 Definition of the CSV plot

Definition 2 (Contribution to the sample variance plot) Let X be a m-dimensional
random vector with joint pdf p. Let denote by X∼j the random vector of all components
Xi except Xj , and p∼j the associated joint pdf. The marginal pdf (resp. cdf) of random
variable Xj is denoted with pj (resp. Fj). Let f : Rm 7→ R be a function such that
Y = f(X) has finite, non-zero expectation and finite variance. The CSV plot associated
to Xj and f is a function CSVj : [0; 1] → [0; 1] defined by:

∀q ∈ [0, 1], CSVj(q) =
1

V(Y )

F−1

j (q)∫

−∞

∫

Rm−1

[f (x)− E(Y )]2 p(x)dx∼jdxj (19)

10
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5.2 Interpretation of the CSV plot

The CSV plot is a useful tool to analyse the effect of reduced range of an input parameter
to the variance of the model output. The CSV plot works along similar lines with the
CSM plot: if it is close to diagonal, it indicates that the contribution to the output
variance is equal throughout the range of the input parameter Xj .
Following Eqn. (9a), let us have a look at the derivative, or the slope, of the CSV

plot. From Eqn. (19), the slope of the CSV plot between two points (q1, CSVj(q1)) and
(q2, CSVj(q2)) can be written as:

CSVj(q2)− CSVj(q1)

q2 − q1
=

1
(q2−q1)

F−1

j (q2)∫
F−1

j (q1)

∫
Rm−1

[f (x)− E(Y )]2 p(x)dx∼jdxj

V(Y )
(20)

The numerator of the right member of Eqn. (20) can be identified as the variance of
the model output when the range of the parameter Xj is reduced to [F−1

j (q1), F
−1
j (q2)],

but with respect to constant mean E(Y ) over the full range of all parameters. Using
conditional expectations notations, we have:

∀(q1, q2) ∈ [0, 1]2,
CSVj(q2)− CSVj(q1)

q2 − q1
=

E
[
(Y − E(Y ))2 | Fj(Xj) ∈ [q1, q2]

]

V(Y )
(21)

Similarly, by derivating Eqn. (19) with respect to q, using the fact that (F−1
j )′(q) =

1/pj

(
F−1
j (q)

)
, we obtain an expression of the CSV plot derivative:

∀q ∈ [0, 1], CSV ′
j (q) =

E
[
(Y − E(Y ))2 | Fj(Xj) = q

]

V(Y )
(22)

Again, we identify the numerator of the right member of Eqn. (22) as the variance of
the model output Y when the input parameter Xj is fixed to F−1

j (q), but with respect

to constant mean E(Y ) over the full range of all parameters. Eqn. (21) and (22) provide
a good interpretation of the meaning of the CSV plot. Indeed, the CSV plot conveys
information about the effect of a reduced range of input parameter Xj on the variance
of the model output Y . The slope of the CSV plot CSVj(·) between quantiles q1 and q2
is equal to the ratio between the reduced variance of model output Y when Xj varies
in the reduced range [F−1

j (q1), F
−1
j (q2)], and the total variance V(Y ). The slope of the

tangent to the CSV plot CSVj(·) at quantile q is equal to the ratio between the reduced
variance of model output Y when Xj is fixed to F−1

j (q), and the total variance V(Y ).

5.3 Relation with total-order sensitivity indices?

The total-order variance-based sensitivity index associated to input parameter Xj is
defined by [5]:

STj =
EX∼j

[
VarXj

(Y | X∼j)
]

V(Y )

STj measures the total contribution of input parameter Xj , and its interactions with
other input parameters X∼j , to the output variance. It is the expected residual part of

11
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output variance if all model inputs butXj were fixed. Total-order indices verify
∑

j STj ≥
1. They are useful for model simplification by identifying model inputs that have little
influence on the model output variance.
STj can be written as:

STj =
1

V(Y )

∫∫∫

Rm−1

E
[
(Y − E [Y | X∼j])

2 | X∼j = x∼j

]
p∼j(x∼j) dx∼j (23)

Let now compare the expression of the CSV plot derivative CSV ′
j (·) [Eqn. (22)] and

that of total-order sensitivity index STj [Eqn. (23)]. The key point is that the expression
of CSV ′

j (·) involves the computation of a conditionnal expectation E(· | Xj = xj) where
input parameter is fixed, while the expression of STj first requires the computation of a
conditionnal expectation E(· | X∼j = x∼j) where all input parameters but Xj are fixed.
The space of uncertain input parameters is thus not explored in the same order in these
two expressions. This difference supports the conclusion that, in spite of the engaging
analogy between the CSM plot and the CSV plot, further research is needed to find a
possible link of CSV to sensitivity indices.

6. Numerical test cases

6.1 Ishigami test case

6.1.1 Presentation

We consider the usual Ishigami test case, with three uncertain inputs X1, X2 and X3

treated as i.i.d random variables with uniform pdf in [−π, π], and two fixed parameters
a = 7, b = 0.1:

Y = sin(X1) + a · sin(X2)
2 + b ·X4

3 · sin(X1) (24)

6.1.2 Scatterplots, CSM plots and CUSUNORO plots

We first draw a simple random sample x of size n = 300 and compute the associated
output vector y = f(x). We then build, for each input X1, X2, X3, the scatterplot of
output vector y against input vector Xj (Fig. 2), the CSM plot (qi, c

+
ij)i=1,...,n, and the

CUSUNORO plot (qi, zij)i=1,...,n.
It first appears on Fig. 3 that the CSM curve for input X1 deviates a lot from the

diagonal, while CSM curves for X2 and X3 stay closer to it, which we interpret to mean
that input parameter X1 has the largest first-order contribution to output variance. The
same observation can be derived from the CUSUNURO plots (Fig. 4), excepts that one
then have to consider the departure of Zj(q) from the horizontal 0 line. This illustration
of CSM/CUSUNORO plots on the Ishigami function also shows that the CSM plot is
somehow easier to read than the CUSUNORO curve, mainly because it is scaled in such
a way that it always lies in the [0, 1] × [0, 1] square. However, one may also argue that
the relative importance of the inputs is better highlighted in the CUSUNORO curve.
To account for sampling variability, the above procedure was repeated r = 30 times,

for increasing sample sizes n = 10, 100, 1000. Fig. 5 displays the resulting multiple CSM
plots (qi, c

+
i1)i=1,...,n for first input parameter X1 over the r replicas. It clearly suggests

that at small sample size (n = 10), the CSM plot fails to capture the behaviour of the
Ishigami function across the range of X1 values.

12
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6.1.3 Estimation of first-order sensitivity indices

We now compare, on the Ishigami function, the three estimation methods for first-order
sensivity indices Sj based on the CSM plot: finite difference (Sections 4.2), polynomial
regression (Section 4.3) and spline smoothing (Section 4.4). Again, we first draw a simple
random sample x of size n = 300, compute the associated output vector y = f(x), and
build the CSM plot (qi, c

+
ij)i=1,...,n for each input parameter X1, X2,X3.

Fig. 6 shows the approximation of CSM derivative dCj

dq (q), j = 1, 2, 3 obtained with a
11-points finite difference scheme. The approximation appears to be extremely noisy and
cannot be used to estimate first-order sensitivity indices.
To fit polynomial regressions (second method) on CSM sample points (qi, ci)i=1,...,n, we

used the lm function on R software along with the orthopolynom library. Model selection
in the range d = 2, . . . , 20 was based on the AICc information criterion: d = 8 was
selected as the maximum polynomial degree for all input parameters X1 to X3 (Fig. 7).
Fig. 8 shows the fitted polynomial model on the (qi, ci) CSM points. The quality of the
regression is good, as it can be seen by looking at the regression residuals ǫi (Fig. 9 and
Fig. 10), even if a slight auto-correlation structure must be noted.
To perform the CSM spline smoothing (third method), we used the spline package

on R software (spline order o = 5, smoothing parameter λ = 1). Fig. 11 shows the
fitted spline model on the (qi, ci) CSM points. Fig. 12 then displays the estimates of
CSM derivatives C ′(q) as derived from the spline regression model (these estimates were
also computed using spline package). In line with Eqn. (11), we observe that the CSM
derivative is equal to the – shifted and scaled – conditional mean E(Y |Xj).
To account for sample variability, the whole estimation procedure described above was

repeated for increasing sample sizes from n = 30 to n = 10000. For each sample size n, we
drew r = 100 random samples, computed 100 estimates of first-order sensitivity indices
Ŝ1, Ŝ2, Ŝ3 with both polynomial regression and spline smoothing, then computed the
mean value and standard deviation of sensitivity indices estimates over the 100 replicas
(Fig. 13 and Table 1). These numerical results suggest that, on average, the polynomial
regression procedure performs better than the spline and finite difference techniques.

6.1.4 Influence of input sampling scheme

In the previous numerical experiments, the input sample x has been drawn using Simple
Random Sampling (SRS). However, it is well-known from the GSA literature than us-
ing more sophisticated input sample schemes can improve the estimation of sensitivity
indices [5]. While it is clearly not the emphasis of our research — we rather focus on
the estimation of Sj from given data — to discuss what is the best sampling scheme for
GSA, we still found interesting to compare the estimation of Sj from the CSM plot using
three different sampling scheme: i) the SRS scheme; ii) an optimised Latin Hypercube
Sampling (optLHS), using the dedicated lhs package in R, and iii) a low-discrepancy
sampling scheme (namely, scrambled Sobol’ sequences), using the randtoolbox package
in R. Fig. 14 displays the first-order indices estimates for input paramater X1, obtained
with polynomial regression of the CSM plot, for increasing sample size n over r = 100
replicas. It supports the conclusion that both the LHS and scrambled Sobol’ sampling
schemes lead to better estimates of Sj than SRS. It also indicates that, for the Ishigami
function, the scrambled Sobol’ sequences perform slightly better than the optimised LHS
schemes.

13
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6.2 G-Sobol test case

As a second test case, we consider the usual G-Sobol function, with m = 8 uncertain
input variables X1 to X8 treated as i.i.d random variables with uniform pdf in [0, 1], and
a fixed parameter vector a = (0, 1, 4.5, 9, 99, 99, 99, 99):

Y =

8∏

j=1

|4Xj − 2|+ aj
1 + aj

(25)

We follow exactly the same steps as the ones described for the Ishigami function (Sec-
tion 6.1). Fig. 15 shows scatterplots of output vector y against inputs Xj for an input
sample x of size n = 300. Fig. 16 shows the CSM plots associated to each input factor:
inputs X1, X2 and X3 prove to bring a significant contribution to the variance of Y ,
while the other inputs X4 to X8 are almost non-influential. Table 2 and Fig. 17 give
the approximate sensitivity indices Ŝ1 to Ŝ8 obtained with each method for increasing
sample sizes from n = 30 to n = 10000, along with their exact values. Again, it appears
that the polynomial regression technique leads to the best Ŝj estimates.

7. Discussion

7.1 Relation between the CSM plot and first-order sensitivity indices

The Contribution to the Sample Mean plot was first introduced by Bolado-Lavin et al.
[14] as an empirical and graphical technique for sensitivity analysis. They presented how
to build a CSM plot from a sample of nmodel runs, using an empirical plotting procedure
that we described in Section 2.1. Our first contribution is to supplement this approach
by providing a more formal definition for the CSM plot [Eqn. (3)], which, in return,
allows us to take a fresh look at the original CSM plotting procedure: it appears that the
empirical CSM points cij are simply Monte Carlo estimates of the exact CSM quantities
Cj(qi) for the n-quantiles qi = i/n, i = 1, . . . , n. We also indicated how the CSM plot
and the CUSUNORO curve, previously introduced by Plischke [12], are related.
Our main goal was then to clarify the alleged but unproven link between CSM plots and

variance-based sensitivity indices. We provide with Eqn. (9) an exact relation between the
CSM plot Cj(·) associated to input parameter Xj and the first-order sensitivity index
Sj. This formula shows that the value of Sj, and thus the contribution pf Xj to the
variance of the model output, depends on how much Cj(q) deviates from the diagonal
line in the [0, 1] × [0, 1] square. This investigation was strongly motivated by prior, non
fully proven assertions of Bolado–Lavin et al. and Tarantola et al. [14, 15], that ”an input
featuring a very low first-order effect will lead to a line close to the diagonal in the CSM
plot”, and that ”global importance measures could be derived from the CSM plot and
provide the same ranking of model inputs as first-order sensitivity indices”. Our findings
corroborate these empirical claims. However, they also indicate that the initial CSM-
based importance measure suggested by Bolado–Lavin et al. – that is, the maximum
distance of the CSM plot from the diagonal, max (|C(q)− q|; q ∈ [0, 1]) – can be easily
and usefully replaced by an estimate of Sj that we derive from Eqn. (9).

7.2 Estimation of Sj from the CSM plot

Our research also sought to design a new estimation procedure for first-order variance-
based sensitivity indices Sj, based on the CSM plot. Thanks to the explicit formula link-
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ing Sj and Cj(·) [Eqn. (9)], we designed three new estimates Ŝj using: i) finite difference
sheme; ii) polynomial expansion of the CSM plot; and iii) spline smoothing of the CSM
plot. Numerical results on the Ishigami and G-Sobol functions support the conclusion

that the polynomial regression-based estimates Ŝj are the most effective. Equation (17)

provides an explicit formula for Ŝj from the polynomial regression coefficients.
This estimation procedure can be used to compute first-order sensitivity indices Sj

from given data [12], that is, from any set of model runs. Unlike most variance-based
sensitivity analysis technique, it does not require any SA-specific design of experiment
to sample uncertain model inputs. Even so, using an optimized sampling of model inputs
to build the CSM plot will obviously improve the estimation of Sj; on the Ishigami
test cases, we found that both Sobol’ low-discrepancy sequences and LHS designs could
improve the estimation of Sj .

7.3 Limits and further research

It should be noted that this new Ŝj estimate displays a poor accuracy for small sample
sizes n, which may restrict its practical use in real-world studies. In particular, for n ≤
1000, it does not compare well the EASI technique introduced by Plishcke to compute
Sj from given data [13]. This discrepancy may be explained by the fact that our CSM-
based estimation technique proceeds in two steps: i) first the CSM plot is built from the
vector y of model output – with knowledge of Eqn. (3), this first step can be understood
as a numerical integration of the usual scatterplot of y against xj; then ii) first-order
sensitivity index Sj is estimated from the CSM plot using Eqn. (9a), which requires the
computation of the CSM derivative. Our two-steps estimation technique thus involves
both numerical integration and numerical differentiation. This may explain why it is less
efficient than the more straightforward EASI technique, that directly computes Sj from
the output vector y. Further research is thus needed to try and improve the accuracy and

convergence of our CSM-based Ŝj estimate, and to explore its asymptotic properties.
Finally, we also briefly investigated in Section 5 if the Contribution to the Sample

Variance plot [15], which is analogous to the CSM plot, could allow the estimation of
total-order sensitivity indices STj in a similar way. Our first results suggest that it is
probably not the case, because the CSV plot CSVj(·) and total-order index STj do not
involve the same variances. More lessons should be learnt in the future on this issue by
analyzing CSV plots and values of total-order indices for a range of simple test functions.

8. Conclusion

This work was performed with a view towards promoting the use of the CSM plot as a
convenient graphical tool for sensitivity analysis from given data. We first provided an
exact formula linking, for each uncertain model input Xj, the CSM plot Cj(·) with the
first-order variance-based sensitivity index Sj. We then designed a new first-order sensi-

tivity index estimate Ŝj , based on the polynomial regression of the CSM plot. Because
this estimate requires the computation of the CSM plot derivative, its performance does
not compare well with other estimation methods for first-order sensitivity indices from
given data, such as the EASI method. Further research is thus needed to improve the

accuracy of Ŝj, and to investigate its asymptotic properties. Another challenging issue
would be to design a new graphical tool, analogous to the CSM plot, that would allow the
computation of total-order sensitivity indices: our first findings indicate that the CSV
plot may be a misleading track, and that other solutions should now be sought after.
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Appendix A. Proofs on Legendre polynomials

Proposition 2 Let consider the shifted Legendre polynomials (Pk(q))k∈N defined by

Pk(q) = P
(s)
k (2q − 1), with P

(s)
k the standardized Legendre polynomials. We have:

∀(k, l) ∈ N
2, k ≤ l,

∫ 1

0
P ′
k(q)P

′
l (q)dq = 2k(k + 1)1{(k+l)∈ 2N}

Proof. Consider (k, l) ∈ N2 such that k ≤ l. Let denote by Ik,l the integral Ik,l =∫ 1
0 P ′

k(q)P
′
l (q)dq. Using an integration by parts we have :

Ik,l =
[
P ′
k(q)Pl(q)

]1
0
−

1∫

0

P ′′
k (q)Pl(q)dq

P ′′
k is a polynom of degree k − 2 : it can be decomposed on the finite orthogonal basis

(Pi)i=1,...,k−2. As k − 2 < l, using the orthogonality of shifted Legendre polynomials

(Pk)k∈N on [0, 1], we find that the integral
∫ 1
0 P ′′

k (q)Pl(q)dq is equal to 0. Hence :

Ik,l = P ′
k(1)Pl(1)− P ′

k(0)Pl(0)

The values of Pk(q) and its derivative P ′
k(q) at q = 0 and q = 1 can be found from the

corresponding values of non-shifted Legendre polynomial P
(s)
k (q) at q = −1 and q = 1,

which are given in [16, p.777], Eqn. (22.4.6), (22.5.37) and (22.4.2). Using the relations

Pk(q) = P
(s)
k (2q − 1) and P ′

k(q) = 2(P
(s)
k )′(2q − 1) we have:

∀k ∈ N





Pk(1) = 1
P ′
k(1) = k(k + 1)

Pk(0) = (−1)k

P ′
k(0) = (−1)k−1k(k + 1)

We finally obtain:

Ik,l = k(k + 1)[1 + (−1)k+l]

which we can also write this way:

Ikl = 2k(k + 1)1{(k+l)∈ 2N}

�

16



November 13, 2013 Journal of Statistical Computation and Simulation draft

References

[1] Sobol’ I. Sensitivity analysis for non-linear mathematical model. Matem Mod. 1993;1:407–
414.

[2] European Commission. Impact assessment guidelines; 2009. Tech Rep SEC(2009) 92.
[3] CREM. Guidance on the development, evaluation, and application of environmental mod-

els. US Environmental Protection Agency, Council for Regulatory Environmental Modeling;
2009. Tech Rep. Available from: http://www.epa.gov/crem/library/cred guidance 0309.pdf.

[4] Hoeffding W. A class of statistics with asymptotically normal distribution. Ann Math Stat.
1948;19:293–325.

[5] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola
S. Global Sensitivity Analysis - The Primer. Wiley; 2008.

[6] Sobol’ I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo
estimates. Math Comput Simulat. 2001;55:271–280.

[7] Xu C, Gertner G. Understanding and comparisons of different sampling approaches for the
Fourier Amplitudes Sensitivity Test (FAST). Comput Stat Data Anal. 2011;55(1):184–198.

[8] Jansen M. Analysis of variance designs for model output. Comput Phys Commun. 1999;
117(1):35–43.

[9] Chan K, Saltelli A, Tarantola S. Winding stairs: a sampling tool to compute sensitivity
indices. Stat Comput. 2000;10:187–196.

[10] Plischke E, Borgonovo E, Smith C. Global sensitivity measures from given data. Eur J Oper
Res. 2013;226(3):536–550.

[11] Sinclair J. Response to the PSACOIN Level S exercise. PSACOIN Level S intercomparison.
Nuclear Energy Agency, Organisation for Economic Co-operation and Development; 1993.
Tech Rep.

[12] Plischke E. An adaptive correlation ratio method using the cumulative sum of the reordered
output. Reliab Eng Syst Saf. 2012;107:149–156.

[13] Plischke E. An effective algorithm for computing global sensitivity indices (EASI). Reliab
Eng Syst Saf. 2010;95(4):354–360.

[14] Bolado-Lavin R, Castaings W, Tarantola S. Contribution to the sample mean plot for graph-
ical and numerical sensitivity analysis. Reliab Eng Syst Saf. 2009;94:1041–1049.

[15] Tarantola S, Kopustinskas V, Bolado-Lavin R, Kaliatka A, Ušpuras E, Vaǐsnoras M. Sensi-
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Table 1. Ishigami toy function: exact and approximate values of first-order

sensitivity indices. Sample size n = 300, mean and ± standard deviation
over r = 100 replicas.

Method Ŝ1 Ŝ2 Ŝ3

Exact values 0.3190 0.4511 0.004
Finite difference 0,950 ± 0,321 0,893 ± 0,418 0,836 ± 0,625
Polynomial regression 0,293 ± 0,038 0,536 ± 0,058 0,038 ± 0,028
Spline smoothing 0,285 ± 0,037 0,683 ± 0,069 0,032 ± 0,015

Table 2. G-Sobol test case: exact and approximate values of
first-order sensitivity indices. Sample size n = 300, mean and
± standard deviation over r = 100 replicas.

Index Exact values Poly. regression Spline smoothing

Ŝ1 0.716 0.734 ± 0.047 0.669± 0.037

Ŝ2 0.179 0.208 ± 0.049 0.207± 0.040

Ŝ3 0.024 0.058 ± 0.034 0.060± 0.024

Ŝ4 0.007 0.013 ± 0.023 0.011± 0.014

Ŝ5 7.10−5 0.023 ± 0.021 0.024± 0.012

Ŝ6 7.10−5 0.034 ± 0.024 0.029± 0.013

Ŝ7 7.10−5 0.033 ± 0.018 0.023± 0.011

Ŝ8 7.10−5 0.079 ± 0.021 0.038± 0.012
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Figure 1. Empirical CSM points (qi, c
+
ij) (left) and (qi, cij) (right), from a sample of n = 8 model evaluations.
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Figure 2. Ishigami test case: output Y against inputs X1, X2 and X3. Sample size n = 300.
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Figure 3. Ishigami test case: CSM plot of X1, X2 and X3 with respect to Y ; sample size n = 300.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

25
−

0.
15

−
0.

05
0.

05

q

Z
1 

(q
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

25
−

0.
15

−
0.

05
0.

05

q

Z
2 

(q
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

25
−

0.
15

−
0.

05
0.

05

q

Z
3 

(q
)

Figure 4. Ishigami test case: CUSUNORO plot of X1, X2 and X3 with respect to Y ; sample size n = 300.
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Figure 5. Ishigami test case: CSM sampling distribution over r = 30 replicas, for input parameter X1 and for
increasing sample sizes n = 10, 100, 1000.
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Ĉ
′ 1

 (q
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

q

Ĉ
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Figure 6. Ishigami test case: estimates c′i of CSM derivative computed with finite difference scheme.
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Figure 7. Ishigami test case: AICc information criteria for increasing maximum degree d of the polynomial
regression. Best model is obtained for d = 8.
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Figure 8. Ishigami test case: polynomial fit of degree d = 8 on the CSM points (qi, ci)i=1,...,n for input factors
X1 (left) to X3 (right).
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Figure 9. Ishigami test case: polynomial regression of the CSM curve. Residuals ǫi against fitted values ĉi for
input factors X1 (left) to X3 (right).
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Figure 10. Ishigami test case: polynomial regression of the CSM curve. QQnorm plot of residuals ǫi = ĉi − ci for
input factors X1 (left) to X3 (right).
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Figure 11. Ishigami test case: spline smoothing on the CSM points (qi, ci)i=1,...,n for input factors X1 (left) to
X3 (right).
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Ĉ
′ 3

 (q
)

Figure 12. Ishigami test case: estimation of CSM derivative C′(q) with spline smoothing (solid line) and exact

conditional expectation E
(

Y |Xj = F−1
j (q)

)

(dashed line).

22



November 13, 2013 Journal of Statistical Computation and Simulation draft

0.2

0.3

0.4

0.5

n [103]

Ŝ
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Figure 13. Ishigami test case: estimates of first-order sensitivity indices Ŝ1 (left) to Ŝ3 (right) for increasing
sample size n with polynomial regression (left boxplots) or spline smoothing (right boxplots). Horizontal solid line
shows the exact value of Sj .
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Figure 14. Ishigami test case: convergence of sensitivity index estimate Ŝ1 for increasing sample sizes and different
sampling schemes: Simple Random Sampling (left boxplots), LHS (middle boxplots) and Sobol’ sequences (right
bloxplots).
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Figure 15. G-Sobol test case: output Y against inputs X1 to X8; sample size n = 300.
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Figure 17. G-Sobol test case: estimates of first-order sensitivity indices Ŝ1 (top left) to Ŝ4 (bottom right) for
increasing sample size n with polynomial regression (left boxplots) or spline smoothing (right boxplots) – mean
and standard devation over 100 replicas. Horizontal solid line shows the exact value of Sj .
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